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ABSTRACT: This article addresses the unsteady three dimensional flow of a Jeffrey fluid with heat transfer effects. Flow is 
caused due to unsteady stretched surface. Heat transfer through constant temperature (CT) and constant heat flux (CH) is 
considered. In addition the heat transfer rate varies along the surface. Homotopy analysis method (HAM) is implemented for 
obtaining the convergent series solutions of the transformed equations. The behavior of fluid velocity, temperature and Nusselt 
number are analyzed against the pertinent parameters of interest. The finding indicates that there is reduction in temperature 
and thermal boundary layer. The boundary layer thickness is reduced if the sheet temperature increases in one or both of the 
lateral directions. The comparison of the obtained solution with existing results in special case is found in excellent agreement.  
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1. INTRODUCTION 
The study of fluids having nonlinear relationship between the 

shear stress and rate of deformation is a topic of great interest 

for many researchers working in the field for the past two 

decade. The reason of increasing interest lays in the fact that 

the linear relationship between shear stress and rate of 

deformation is not valid for most the fluids that exist in 

nature, industry and technology. Furthermore, the phenomena 

like normal stress effects, shear thinning and thickening, time 

relaxation and retardation, rotation of microelement, effect of 

couple stresses cannot be explained through the Navier-

Stokes equations. Therefore, a need for more complex 

constitutive relationship is the need of time. However, the 

complex natures of fluids that exist make it impossible to 

describe these nonlinear effects by a single constitutive 

relationship. Hence, different models of such fluids are 

introduced by the various investigators [1-6]. The initial 

problem of two dimensional flows due to a stretching plane 

surface is discussed by Crane [7]. To date many researches 

have been done on steady boundary layer problems due to a 

stretching sheet. Namely, Wang [8] and Ariel [9] studied 

steady three dimensional boundary layer flows over a 

stretching surface. Liu and Andersson [10] investigated the 

heat transfer over a stretching surface with variable thermal 

conditions. Ahmad et al. [11] added magnetic effect to the 

flow over a steady stretching sheet in a porous medium. 

Further Hayat et al. [12] considered three dimensional flow 

over a stretching surface in a viscoelastic fluid. In another 

article Hayat et al. [13] discussed three dimensional stretched 

flow of Jeffery fluid with variable thermal conductivity and 

thermal radiation. Shehzad et al. [14] explained MHD three 

dimensional flow of Jeffery fluid with Newtonian heating. On 

the other hand, only a few studies have been reported on the 

problem of unsteady boundary layer flow due to a stretching 

sheet. Surma Devi et al [15] and Lakshimsha et al [16] 

studied unsteady three dimensional boundary layer flows 

over a stretching surface. Ali et al [17] investigated the 

unsteady uniform flow across a stretching surface in an 

arbitrary direction, where the unsteadiness is caused by the 

impulsive motion of the stretching surface. While, Abd El-

Aziz [18] added radiation effect to the flow over an unsteady 

stretching sheet and reported that for larger Prandtl number, 

the effect of radiation parameter becomes more significant. 

Hayat et al [19] studied the time dependent three dimensional 

flow of elastico viscous fluid and mass transfer over a 

bidirectional stretching sheet. Recently Awais et al. [20] 

studied time dependent boundary layer flow of a Maxwell 

fluid over an unsteady bidirectional stretching sheet. Very 

recently Ahmad et al. [21] discussed heat transfer analysis of 

MHD flow due to unsteady bidirectional stretching sheet 

through porous space. The present paper aims to study the 

problem of time dependent three dimensional Jeffrey fluid 

and heat transfer across an unsteady bidirectional stretching 

sheet with variable thermal conditions. Jeffrey fluid is a 

subclass of non-Newtonian fluids which capable of 

describing ratio of relaxation times to retardation time.  To 

the best of our knowledge the present problem has not been 

considered before and thus the reported results are new. The 

transformed equations are solved analytically via homotopic 

solutions [22-30]. The obtained results are analyzed.  

2. PROBLEM FORMULATIONS 
We consider time dependent three dimensional flow of an 

incompressible Jeffrey fluid over an unsteady stretching 

surface. The flow occupies the region     and coincide the 

space perpendicular to    plane. The motion in the fluid is 

caused by a non-conducting stretching sheet. The constitutive 

equations for the Jeffery fluid model are 

               (1) 

  
 

    
( ̇     ̈)     (2) 

where   denote the stress tensor,   denote the pressure,   the 

identity tensor,    the extra stress tensor,   the dynamic 

viscosity,    the ratio of relaxation and retardation times and 

   the retardation time. More over the dots over the quantities 

denote the material differentiation. The quantities  ̇ and  ̈  are 

defined as 

 ̇     (  )      (3) 

 ̈  
 

  
 ̇        (4) 

The law of conservation of mass and momentum for present 

flow problem are given by [31] 
  

  
 

  

  
 

  

  
      (5) 
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     (8) 

Invoking the boundary layer approximation [19-21] 

   ( )     ( )     ( )     ( )     ( )  

   ( )       (9) 

Eqs. (6) and (7) takes the following equation and Eq. (8) 

vanishes as its every term has order     
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(    ) (12) 

The boundary conditions relevant to the present flow 

situation are 

    ( )  
  

    
        ( )  

  

    
                

    

              as           (13) 

For the temperature we have the following two sets of 

boundary conditions. 

(CT case):     (   )                                 

                               .   (14) 

(CH case):    
  

  
                            

                           .    (15) 

Here           and     are constant stretching rates 

with dimension time
-1

 such that         is the kinematic 

viscosity. Note that     ( ) and     ( ) are the 

unsteady stretching velocities along    and   direction 

respectively whereas when     then both     and 

    means that fluid is rest for away from the sheet and 

major contribution of the flow occur only in the boundary 

layer. That is why we have employed the order analysis and 

analyze the results in boundary layer region. The stretching 

phenomenon in this direction has already studied by various 

authors [11,12,13,14,19,20,21]. We define the following 

similarity variables 

  √
 

 (    )
       

  

    
  ( )      

  

    
  ( )   

 √
  

    
* ( )   ( )+   (16) 

 ( )  
 (       )   

  (   )   
   [CT]     and     (       )     

 

  
√
 

 
      ( )  [CH].      (17) 

where    is the thermal conductivity of the fluid,    is the 

ambient temperature outside the thermal boundary layer,   

and   are positive constants. The power indices r and s 

decided how the temperature or the heat flux at the sheet 

varies in the (   )-plane. 
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Thus the Eq. (5) is identically satisfied and Eqs. (10-12) take 

the following form 

     (    ) 0(   )         .   
 

 
   /1  

  ,   
  (   )             (            )-   ,

      (18) 

     (    ) 0(   )      
 
  .   

 

 
   /1  

  ,   
  (   )              (            )-      

      (19) 

      (    )     (         )    .
 

 
   

 /           [CT],      (20) 

      (    )     (         )    .
 

 
   

 /         [CH].    (21) 

The associated boundary conditions are also reduced into the 

following form 

                          at          
                   as       (22) 

  
 

 
      

 

 
      

   

    
       

 

  
,      

 

    
    (23) 

The local Nusselt number in dimensionless form is 
  

   
       ( )         (24) 

where       
  ( )

 
  is the local Reynolds number. 

3. HOMOTOPY ANALYSIS SOLUTIONS AND 
CONVERGENCE ANALYSIS 
Choose the initial approximations and linear operators given 

below  
  ( )       ( )    ( )   (     (  ))    ( )  
   (  )    ( )     (  )     

      (25) 

  ( )  
   

   
 

  

  
      ( )  

   

   
 

  

  
     ( )  

   

   
    

and   ( )  
   

   
         (26) 

satisfynig 

{
 

 
  ,        ( )       (  )-    

  ,        ( )       (  )-    

  ,     ( )       (  )-    

  ,      ( )         (  )-    

   (27) 

in which       are arbitrary constants. From Eqs. (18)–(21), 

the nonlinear operators                   are defined by 

the following expressions 

  [ ̂(   )  ̂(   )]   ̂   (   )   

(    ) {. ̂(   )   ̂(   )/  ̂  (   )  . ̂ (   )/
 

 

 2
 

 
 ̂  (   )   ̂ (   )3}    2 ̂

   (   )  . ̂(   )  

 ̂(   )/  ̂   (   )   ̂ (   ) ̂   (   )   .  ̂     (   )  

  ̂   (   )/3      

      (28) 
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      (29) 
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    (31) 

If   ,    - is the embedding parameter and 

                  are the non-zero auxiliary parameters, 

then the zeroth-order deformation problems are of the 

following form 

(   )  [ ̂(   )    ( )]         (32) 

(   )  , (   )    ( )-         (33) 

(   )  [ ̂(   )    ( )]         (34) 

(   )  [ ̂(   )    ( )]         (35) 

 ̂(   )   ̂(   )     ̂  (   )             

 ̂ (   )      ̂(   )     ̂  (   )        (36) 

 ̂ (   )   ̂ (   )   ̂(   )   ̂(   )    (37) 

These equations implies that for             have the 

following solutions 

 ̂(   )    ( )      ̂(   )   ( )   (38) 

 ̂(   )    ( )    ̂(   )   ( )   (39) 

 ̂(   )    ( )      ̂(   )   ( )   (40) 

 ̂(   )    ( )      ̂(   )   ( )  (41) 

 ̂(   )   ̂(   )   ̂(   )      ̂(   ) varies from 

  ( )   ( )      ( )          ( ) to the solutions  ( ) 
 ( )   ( )       ( ) as   varies from 0 to 1. The Taylor’s 

series thus suggest that 

 ̂(   )    ( )  ∑   (
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The auxiliary parameters                 in Eqs. (32)-(35) 

ensures the the convergence of the series solutions given by 

Eqs. (42)-(45). Assuming that                 are chosen 

such that the series in Eqs. (42)-(45) are convergent at      
Thus 

 ̂( )    ( )  ∑   (
 
    )   (46) 

 ̂( )    ( )  ∑   (
 
    )   (47) 

 ̂( )    ( )  ∑   (
 
    )   (48) 

 ̂( )    ( )  ∑   (
 
    )   (49) 

Eqs. (46)-(49) have the general solutions in the forms 

  ( )    
 ( )          ( )        (  ),(50) 

  ( )    
 ( )          ( )        (  ), 

     (51) 

  ( )    
 ( )       ( )        (  ),       (52) 

  ( )    
 ( )       ( )         (  ),   (53) 

where    
 ( )   

 ( )   
 ( )       

 ( ) denotes the special 

solutions. The auxiliary parameters          and    for the 

functions       and   can adjust and control the 

convergence of homotopic solutions. To obtain the 

appropriate convergence region, we plotted the   curve at 

15
th

 order of approximations. It is found from Fig. 1 the range 

of admissible values are                         

                   and               . Further 

it is noted that our series solutions converge in the whole 

region of   when            and               

Table 1 is made just to see that how many orders of 

approximations are required for a convergent solution. It is 

found that for velocities   and   a 15
th

 order of solution is 

sufficient however for   and   the required convergence will 

be achieved at 30
th

 order solution. Hence we need fewer 

deformations for the velocities as compared to temperatures 

for a convergent solution.  

 
4. GRAPHICAL RESULTS AND DISCUSSION 
The homotopy analysis method solutions in the form of an 

infinite series are obtained using symbolic software 

MATHEMATICA. The values of   are chosen in such a way 

that the obtained series is convergent for the chosen set of 

fluid parameters appearing in the problem. Our primary 

interest in this model is to see the effect of non-Newtonian 

fluid parameter; unsteadiness and influence of other various 

involve parameter on the velocity and temperature profiles. 

To depict the influence of different parameters on the 

velocity and temperature profiles Figs. 2-11 have been 

sketched. The variation of dimensionless parameter   of 

  ( )  and   ( ) for three dimensional flow situations is 

elucidating in Fig. 2. This Fig. shows that velocity field is an 

increasing function of     It is also noted that the boundary 

layer also increases with an increase in    Fig. 3 shows the 

effect of   on the velocity profile   ( )  and   ( ) for three 

dimensional situation. It is observed that from figure 3(a) the 

velocity   ( ) decreases with increasing values of the 

stretching ratio   while the velocity   ( ) increases by 

increasing the value of   (see Fig. 3(b)). It is examined that 

the behavior of   on   ( )  and   ( ) is similar in qualitative 

sense for steady flow situation as Hayat et al. [16]. The 

influence of parameter   on temperature profiles  ( ) and 

 ( ) for three dimensional flow situation is portrayed in Fig. 

4. This Fig. indicates that temperature is a decreasing 

function of   for both CT and CH cases. It is also noted that 

the thermal boundary layer decreases with an increase in  . It 

has been observed that the variation of the sheet temperature 

has substantial effects on the thermal boundary layer. Fig. 5 

describes the influence of Deborah number    on  ( ) and 

 ( )  for three dimensional flow situations. It is observed 

that for large values of    the system exhibits viscoelastic 

behavior while for small values the conventional viscous 

effects dominates and the situation is quite different for 

  when    keeping fixed. It can be seen that as we increases 

Deborah number    it give rise the temperature profiles. It is 

fact that an increase in Deborah number    increases the 

relaxation time. The deviation of    on  ( ) and  ( )  are 

seen in Fig. 6. Here we see that the temperature profiles 

decreases when we increase Deborah number   . An increase 

in Deborah number    is due to increase in retardation time. 

An increase in retardation time decreases the temperature 

profiles. It is worth mentioning that the stress decreases with 

an increase in the relaxation parameter. Retardation 

parameter characterizes the retardation time when strain 

decreases at constant stress, so velocity decreases by 

increasing the retardation parameter. A comparison between 

Figs. 5 and 6 shows that Deborah numbers    and    effects 

quite oppositely on temperature profiles. Fig. 7 elucidates the 

influences of the stretching ratio   on the temperature 

profiles. It is noted that the temperature profile decreases with 

increasing values of the stretching ratio   in both CT and CH 

cases. It is also observed that the thermal boundary layer is 

decreased for large values of the stretching ratio  . It is 

further noted that these results are similar in qualitative sense 

with the temperature profiles shown by Liu and Andersson 

[12]. The effect of power indices   and   on the temperature 

profiles are seen through Figs. 8 and 9. It can be seen that the 

indices   and   have similar effect on the temperature 

profiles. It is observed that both decrease the temperature and 

thermal boundary layer thickness. Fig. 10 shows the effects 

of the heat source/sink parameter   on the temperatures  ( ) 
and  ( ). As expected, the temperature increases with 

increasing heat source   > 0 and decreases in the case of heat 

sink   < 0. The behavior of Prandtl number    on the 

temperature is shown in Fig. 11. The temperature decreases 

with an increase in Prandtl number which implies that the 

thermal boundary layer becomes thinner with large Prandtl 

number. The Prandtl number depends on thermal diffusivity 

and it plays a vital role for higher and lower temperature. 

Hence greater value of Prandtl number reduces thermal 

diffusivity and consequently temperature decreases. 

 Table 2 shows the comparison with the existing limiting 

solutions in the literature. From this Table we examined that 

our series solutions have an excellent agreement with the 

previous limiting results. Numerical values of local Nusselt 

number    ( ) for different values of                   in 

both viscous and Jeffery fluid cases are obtained in Table 3. 

We observed that the local Nusselt number (heat transfer rate 

at the wall) for viscous fluid case are quantitatively lesser in 

comparison than Jeffery fluid. It is also observed that an 

increase in the values of unsteadiness   may also increase the 

Nusselt number. 
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5. CONCLUDING REMARKS 
Three dimensional unsteady flow and heat transfer 

characteristics of a Jeffery fluid due to an unsteady 

bidirectional stretching sheet is investigated in this paper. The 

key observations are listed below. 

(i) Velocity fields   ( ) and   ( ) are the increasing 

function of time dependent parameter  . 

(ii) Temperature profiles  ( ) and  ( )  are the decreasing 

functions of time dependent parameter  . 

(iii) The Deborah numbers    and     behave quite 

opposite for both the velocities and temperature profiles. 

(iv) The constant surface temperature (CT) and constant 

heat flux (CH) in both cases decreases when   increases.  

(v) Both temperature and thermal boundary layer thickness 

are decreased when the Prandtl number increases.  
(vi) For      the steady flow situation can be obtained.  

(vii) For          the results for Newtonian fluid case 

can be recovered.  3-D flow of Jeffrey fluid in a channel 

with stretched wall, Europ. Phys. J. Plus, 127 (2012) 

12128-5. 

 

 

 

Table 1: Numerical values of    ( )     ( )   ( ) and    ( ) at different order of approximations when                
                                    and              

Order of approximation     ( )     ( )    ( )    ( ) 

1 1.191250 0.433300 1.235000 1.395000 

5 1.217145 0.443713 1.382202 1.224081 

10 1.217155 0.443747 1.414834 1.198861 

15 1.217154 0.443746 1.425933 0.190801 

20 1.217154 0.443746 1.430894 1.187282 

25 1.217154 0.443746 1.431533 1.186834 

30 1.217154 0.443746 1.431496 1.186533 

35 1.217154 0.443746 1.431496 1.186533 

40 1.217154 0.443746 1.431496 1.186533 

Table 2:  Numerical values of   ( )     ( )   ( )      ( ) for different value of   when            

    ( )   ( )  ( )  ( ) 

Wang [8]       -1 0 1 0 

Liu and Andersson [10]  -1 0 1 0 

Present solution  -1 0 1 0 

Wang [8]        -1.048813 -0.194564 0.907075 0.257986 

Liu and Andersson [10]  -1.048813 -0.194565 0.907067 0.257966 

Present solution  -1.048811 -0.194564 0.907046 0.257993 

Wang [8]        -1.093097 -0.465205 0.842360 0.451671 

Liu and Andersson [10]  -1.093096 -0.465206 0.842361 0.451663 

Present solution  -1.093095 -0.465205 0.842386 0.451677 

Wang [8]        -1.134485 -0.794622 0.792308 0.612049 

Liu and Andersson [10]  -1.134486 -0.794619 0.792293 0.612128 

Present solution  -1.134486 -0.794618 0.792302 0.612135 

Wang [8]       -1.173720 -1.173720 0.751527 0.751527 

Liu and Andersson [10]  -1.173721 -1.173721 0.751494 0.751494 

Present solution  -1.173721 -1.173721 0.751497 0.751497 
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Table 3:   Values of local Nusselt number     ( ) for different values of                    . 

                                 

0.25 1.0 0.5 0.0 0.0 0.0 1.069386 1.061258 

0.50      1.108350 1.115748 

0.75      1.158753 1.169394 

0.50 0.5 0.5 0.0 0.0 0.0 0.739980 0.743691 

 1.5     1.459927 1.470380 

 2.0     1.773171 1.791630 

0.5 1.0 0.0 0.0 0.0 0.0 0.716953 0.714504 

  1.0    1.444192 1.463342 

  1.5    1.754934 1.774946 

0.5 1.0 0.5 -0.2 0.0 0.0 1.207769 1.214469 

   0.2   0.997745 1.005936 

   0.4   0.873239 0.882331 

0.5 1.0 0.5 0.0 -2.0 0.0 0.340102 0.314223 

    2.0  1.663113 1.681363 

    4.0  2.108220 2.130246 

0.5 1.0 0.5 0.0 0.0 -2.0 0.746805 0.754706 

     2.0 1.412769 1.419411 

     4.0 1.677609 1.683402 

 

  

Fig. 1: The  -curve for    ( )    ( )   ( ) and    ( ) at 15th –order of approximation. 
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Fig. 2: Influence of unsteadiness parameter   on velocity (a)   ( ) case (b)   ( ) case when                 and        

  

Fig. 3: Influence of Deborah number    on temperature, (a) (a)   ( ) case (b)   ( ) case when                 and      . 

  

Fig. 4: Influence of unsteadiness parameter   on temperature (a) CT case (b) CH case when                         

    and       
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Fig. 5: Influence of Deborah number    on temperature, (a) CT case (b) CH case when                     and      . 

  

Fig. 6: Influence of Deborah number    on temperature, (a) CT case (b) CH case when                     and       

  

Fig. 7: Influence of stretching parameter   on temperature, (a) CT case (b) CH case when                and      . 
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Fig. 8: Influence of   on temperature, (a) CT case (b) CH case when                and      . 

  

Fig. 9: Influence of   on temperature, (a) CT case (b) CH case when                and      . 

  

Fig. 10: Influence of   on temperature, (a) CT case (b) CH case when                and      . 
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Fig. 11: Influence of    on temperature, (a) CT case (b) CH case when                and      . 
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